Potential of GeSbTe phase change materials for thermoelectric applications

Atsuko Kosuga^{1,*}, Hiroki Ishibashi¹, Yoshiki Kubota¹, and Kouichi Kifune² ¹ Graduate School of Science, Osaka Prefecture University, Sakai 599-8570, Japan ² Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima 731-5193, Japan * a-kosuga@p.s.osakafu-u.ac.jp

ABSTRACT

Thermoelectric (TE) materials can generate electricity from low-grade waste heat. The efficiency of TE materials is determined by the dimensionless figure of merit, $ZT = S^2 \sigma T/\kappa$, where *S* is the Seebeck coefficient, σ is the electrical conductivity, *T* is the absolute temperature, and κ is the thermal conductivity. Generally, κ is considered to be the sum of lattice (κ_{lat}) and electronic (κ_{el}) contributions; *S*, σ , and κ_{el} are strongly interdependent, making the development of high-performance TE materials difficult. One strategy is to focus on materials with inherently low κ_{lat} values. Recently, ternary and quaternary compounds with long-period crystal structures have been attracting increasing attention. This is because such materials are expected to have low κ_{lat} values, because they have heavy constituent elements in large unit-cells and relatively weak Van der Waals bonding between their slabs; both of these characteristics lead to strong phonon scattering. Among such materials, (GeTe)_n(Sb₂Te₃)_m (*n* and *m* are integers) materials with homologous structures are strong candidates for high-performance TE materials, because of their good electrical properties and low κ_{lat} values. In this presentation, we will introduce TE properties of polycrystalline GeSb₆Te₁₀. In addition, our recent trial of making a metastable cubic Ge₂Sb₂Te₅ bulk material as a low-temperature TE material will be introduced.

Key words: Thermoelectric, electrical properties, thermal conductivity, GeSbTe