Intermediate-Range Order in GeSbTe Studied by Anomalous X-ray Scattering

Jens R. Stellhorn ${ }^{1,2}$, Wolf-Christian Pilgrim ${ }^{1}$, Bernhard Kaiser ${ }^{3}$, Nathalie Boudet ${ }^{4}$, Nils Blanc ${ }^{4}$, Hiroo Tajiri ${ }^{5}$, Shinji Kohara ${ }^{6}$, Koji Kimura ${ }^{2}$, Shinya Hosokawa ${ }^{1,7}$
${ }^{1}$ Department of Chemistry, Philipps University of Marburg, 35032 Marburg, Germany,
${ }^{2}$ Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
${ }^{3}$ Institute of Materials Science, Technical University of Darmstadt, 64287 Darmstadt, Germany
${ }^{4}$ Institut Néel, University Grenoble Alpes and CNRS, 38000 Grenoble, France
5 JASRI/SPring-8, Hyogo 679-5198, Japan
${ }^{6}$ NIMS, Hyogo 679-5148, Japan
${ }^{7}$ Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan,

Key words: Intermediate-range order, AXS, PCM, GeSbTe

Abstract

We have studied the structure of four different $\mathrm{Ge}-\mathrm{Sb}-\mathrm{Te}$ phase changes materials (PCM) along the pseudo-binary line $(\mathrm{GeTe})_{1-\mathrm{x}}\left(\mathrm{Sb}_{2} \mathrm{Te}_{3}\right)_{\mathrm{x}}$ between $0<\mathrm{x}<0.66$ by anomalous X-ray scattering (AXS). The data were analyzed with Reverse Monte Carlo modelling and show consistent developments of short- and intermediate-range order parameters (SRO and IRO, respectively). The description of the IRO is a specific advantage of AXS over comparable characterization methods, which have previously been used to describe the amorphous $\mathrm{Ge}-\mathrm{Sb}-\mathrm{Te}$ structure. On this length scale, we find a distinct Ge-based backbone network. The character of this network gradually changes from a more tetrahedral to a more octahedral arrangement (as it is found in the corresponding crystal structure) with increasing content of $\mathrm{Sb}_{2} \mathrm{Te}_{3}$ (see Fig. 1). Thus, the network gradually becomes more 'crystal-like' - which is an important factor when considering the impact of the structure on macroscopic material properties like the optical contrast or the increasing phase-change speed along the pseudo-binary line. It also correlates with the development of the optical dielectric constant $\varepsilon_{\mathrm{r}}(0)$ of the amorphous phase (see Fig. 1).

Fig. 1: Ratio of octahedral vs tetrahedral arrangements around Ge atoms in $\mathrm{Ge}-\mathrm{Sb}-\mathrm{Te}$ (circles) and (extrapolated) dielectric constants (triangles) [1,2].

References:
P. Němec at al., J. Appl. Phys. 109, 2011, 073520.
K. Shportko et al., Nat. Mater. 7, 2008, 653.

